PVEPS

Photovoltaic Electrolysis Propulsion for CubeSats.

CubeSats are a newly emerging, low-cost, rapid development platform for space exploration research. To date, CubeSats have only been flown in Low Earth Orbit (LEO), though a large number are currently being designed to be dropped off by a mother ship on Earth escape trajectories intended for Lunar and Martian flyby missions. Advancements in propulsion technologies now enable these spacecraft to achieve capture orbits around the moon and Mars, providing a wealth of scientific data at low-cost. However, the mass, volume and launch constraints of CubeSats severely limit viable propulsion options.

We analyze innovative propulsion solutions using energy generated by onboard photovoltaic panels to electrolyze water, thus producing combustible hydrogen and oxygen for low-thrust applications. Water has a high storage density allowing for sufficient fuel within volume constraints. Its high enthalpy of formation provides more fuel that translates into increased ∆V and vastly reduced risk for the launch vehicle. This innovative technology poses significant challenges including the design and operation of electrolyzers at ultra-cold temperatures, the efficient separation of the resultant hydrogen and oxygen gases from liquid water in a microgravity environment, as well as the effective utilization of thrust to produce desired trajectories.