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Exploration of small bodies brings insight to the origins of the life, the Earth, and the solar
system. However, attempting surface missions to small-bodies with inadequate gravity field
information is prone to high-risk of failure. Spacecraft flybys can be a viable approach to
perform an initial reconnaissance before a surface mission can be deployed. The challenge
with flybys is that they are time and coverage limited thus providing only a limited glimpse
of the target. These disadvantages can be overcome using a swarm approach. While swarms
are important platforms for small-body exploration, their mission design is a complex design
problem, and more importantly, there is no end-to-end tool for designing spacecraft swarm
missions. This paper presents IDEAS, an end-to-end mission design architecture that designs
swarm missions for small body flyby exploration. The IDEAS platform, at its heart, will
have three automated design modules corresponding to spacecraft design, swarm design, and
trajectory design. In our previous work, we developed the Automated SwarmDesigner module
of the IDEAS platform to explore uniformly rotating asteroids. The current work will focus on
enabling the IDEASarchitecture to design visualmappingmissions to planetarymoons through
spacecraft swarm flybys. Specifically, a swarm of spacecraft will be designed to explore a target
moon through multiple encounters at different orbital locations using hyperbolic trajectories
around the central planet. The objective of the designed swarm is to produce a detailed surface
mapof themoonwith aminimumnumber of spacecraft. Here, we show that the design of swarm
trajectories will result in a boundary value problem, where we have a rendezvous location and
an excess velocity asymptote. This boundary value problem will be formulated as a system
of non-linear equations which will then be solved using an iterative scheme. The solutions
to this will specify a hyperbolic reconnaissance trajectory of a participating spacecraft in the
swarm. We then determine the optimal set of these flyby trajectories using an evolutionary
search algorithm tomeet the required coverage criterionwith aminimumnumber of spacecraft.
Finally, the algorithms developed in this work are demonstrated through a theoretical example
of designing a reconnaissance mission to the Martian moon Phobos.

I. Introduction

Planetary moons are high priority science targets. Insitu missions to their surface will help to achieve major
scientific goals set out in the recent planetary science decadal survey [1, 2]. In addition, more practical studies

to use these moons to facilitate interplanetary travel have also been made [3]. However, the dynamical and physical
environment around these moons offer a lot of uncertainty which can be high-risk for in-situ mission [4, 5] unless
detailed reconnaissance is done beforehand. While such reconnaissance can be done using orbits, the micro-gravity
environment is often a challenge for the orbital stability [6], and more importantly, these orbiter missions have to
account for an insertion maneuver which can be expensive in terms of fuel. Flybys utilizing hyperbolic trajectories
offer a potential solution for small body reconnaissance. Planetary moon flybys have been a major source of human
understanding of the planetary moons. Historical flybys of the Pioneer [7] and Voyager missions [8] have immensely
contributed to the knowledge of the moons of outer planets such as Jupiter and Saturn. The flyby trajectories of two
Voyager spacecraft near Saturn and their photo contributions of the Saturnian moons are presented in Figure 1.

However, flyby missions are limited by their spatial and temporal coverage. Furthermore, this coverage is constrained
by self-shadowing, which limits the amount of illuminated surface to around 50 %. While these challenges are complex
to be solved by a single spacecraft, they can be well handled by a swarm of multiple spacecraft. Design of a swarm
mission is a multi-disciplinary problem as it involves the selection of several system-level parameters such as the number
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Fig. 1 The flyby trajectories of the two Voyager spacecraft around Saturn (left), and the images of the planetary
moons taken during these flybys (right). [Image credit: NASA]

of spacecraft, choice of payload, and other subsystems, etc. These designs can greatly benefit from an end-to-end swarm
mission design tool. To address these challenges, we developed the Integrated Design Engineering and Automation of
Swarms (IDEAS), a mission architecture to design interplanetary swarm missions [9]. In the IDEAS framework, a
swarm mission design is handled by three automated design modules trajectory, swarm, and spacecraft as shown in
Figure 2. Each of these modules tries to optimize their respective objectives, and the collective validity of the design is
checked by the Mission Analyzer module. In the current work, we explore the capability of the Automated Swarm
Designer module of IDEAS to design swarm flyby missions that generate global surface maps of planetary moons. The
swarms will be designed to be in hyperbolic trajectories with respect to the central planet around the moon. Due to the
high energy nature of the hyperbolic trajectories, the gravitational effects of the moon will be assumed to be negligible.

We begin by presenting a new design methodology to shape the encounter of the swarm. The method involves
selecting a point on the encounter trajectory with respect to the moon, which is capable of making the desired observation.
This coupled with the incoming excess velocity asymptote, V̂−∞ can be used to define a hyperbolic trajectory of the
spacecraft. In this work, we show that this boundary value problem will result in a system of non-linear equations,
which will be solved using an iterative root-finding scheme. The trajectories will then be optimized to get the required
coverage with a minimum number of spacecraft. Finally, the algorithms presented in this work will be demonstrated
using a theoretical mission design to explore the Martian moon Phobos.

The organization of the current work is as follows: Section II presents related work done in the field of spacecraft
swarms. Section III presents the methodology of the current work. Here we present the moon mapping design problem.
The boundary value problem corresponding to the computation of the hyperbolic trajectories will also be formulated
here. Section IV will demonstrate the capabilities of the algorithms presented to design a surface mapping mission
to the Martian moon Phobos. Section V will identify and highlight the important contributions of the current work.
Finally, Section VI will conclude the current work by providing a brief summary of the work followed by identifying
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Fig. 2 Architecture of the IDEAS software for designing spacecraft swarm missions to small bodies.

pathways forward.

II. Related Work
Historically, spacecraft flybys have been the dominant method of exploring solar system small bodies. The Vega

missions that explored the comet 1P/Halley through flybys [10] are amongst the first small body exploration missions in
human history. Several prominent missions such as Giotto [11], Sakigake [12], International Comet Explorer (ICE) [13],
Stardust [14], Deep Impact [15], have relied on flyby trajectories to make their observation. More relevant to the current
topic, the Pioneer [7] and the Voyager [8] missions have led to some of the first observations of the moons of Jupiter and
Saturn. The flyby trajectory design problem for moon exploration is mainly posed as a timing problem. In this case, the
spacecraft trajectory closely passes the orbit of the moon, when resolved in an inertial reference frame of the central
planet. The spacecraft is then phased on its trajectory such that the moon and the spacecraft will be close enough during
the spacecraft arrival. These strategies only allow a limited glimpse of the target moon. A new design strategy is required
if we are interested in generating global surface maps of the target bodies through spacecraft flybys. Furthermore, since
such swarm designs are influenced by spacecraft design, and the interplanetary trajectory design. For this reason, a
unifying mission design scheme where the spacecraft, trajectories, and the swarm are designed simultaneously can
result in holistically optimal designs that are often intuitive to traditional mission design methods [16]. In order to
address these challenges, we developed the Integrated Design Engineering and Automation of Swarms (IDEAS) for the
automated design of such spacecraft swarm missions [9]. Following this, we applied developed the capability of IDEAS
for different mission design applications. In our previous work, we designed visual mapping missions to uniformly
rotating asteroids [9, 17]. We have also applied the IDEAS methodology to design Earth monitoring constellations
[18, 19], and constellations to enable communications in the cislunar space [20]. Our previous work also explored the
design of a planetary moon mapping swarm, where the spacecraft in the swarm enter into an orbit around the central
planet [21]. The current work will aim to enable swarm designs that explore planetary moons while remaining on
hyperbolic trajectories around the central planet, thus avoiding orbit insertion maneuvers.
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III. Methodology
We begin by introducing formulating a swarm flyby mapping mission as an optimization problem, along with the

design gene. We then proceed to construct the hyperbolic trajectories from a given design gene. As mentioned above,
the trajectories will be constructed by solving a system of nonlinear equations.

A. Mapping Mission
The objective of a moon mapping mission would be to generate global surface maps of the moon with a tolerance of

εmap. The observations will have a ground resolution constraint of xD , and a minimum elevation angle of εD . This
allows us to estimate the altitude required h f for imaging the moon as:

h f =
xDDC

λD
(1)

Where DC is the aperture diameter of the spacecraft camera, and λD is the wavelength of the imaging sensor. The
red spectrum can be taken as a baseline for this purpose since it guarantees that the entire visual spectrum is imaged.
Similarly, the required half field of view spacecraft ηD is given by

sin ηD =
(

RT

RT + h f

)
cos εD (2)

Where RT is the average radius of the target moon. Finally, the mission design altitude for the mission can be
selected as

h′f = h f − ∆h (3)

Where ∆h is a user-specified tolerance parameter.

B. Trajectory Design
The trajectory design addresses the launch of spacecraft from the Earth, and arrival at the target planet. We assume

that the complete swarm is launched from Earth on the same launch date DL and arrives in the neighborhood of a
selected arrival date DA. The launch and arrival dates can be used to define a heliocentric Lambert arc between the
launch and arrival planets. The Lambert arc provides the excess velocity asymptotes at the launch V̄+

∞,1 and arrival
V̄−
∞,2. The mission-critical parameters like launch energy (C3), time of flight (ToF), and excess velocity magnitude at

arrival v−
∞,2 can be easily extracted from these asymptotes [22]. Since the encounter velocities with the target moon are

directly related to the excess velocities of the spacecraft at the arrival planet, the ease of imaging could be improved by
selecting trajectories with low v−

∞,2. Additionally, the trajectories selected should have practical bounds on the launch
energy C3,max , and time of flight ToFmax . Additionally, the right ascension RAA, and declination DAA of the arrival
asymptote can also be extracted from V̄−

∞,2, which will be used to construct the swarm trajectories. The automated
trajectory design problem then is a search for launch and arrival dates which produces a feasible trajectory with the least
excess velocity at arrival, posed as

min JT = v−∞,2

s.t. DL,min ≤ DL ≤ DL,max

DA,min ≤ DA ≤ DA,max

C3 ≤ C3,max

ToF ≤ ToFmax

(4)

Where the bounds on launch and arrival dates are defined by the user. The design gene of the automated trajectory
design problem is shown in Figure 3.
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Fig. 3 Gene map of the trajectory design problems showing different design variables and their attributes.

C. Swarm Configuration
We assume that a spacecraft swarm will continuously image the target moon once their altitude with respect to the

target falls below the required imaging altitude in Equation 1. Let us assume that during a single pass, a swarm of Nj

spacecraft will pass by the moon at an altitude h′f . In order to shape the encounter of the swarm, we allow the spacecraft
i in the swarm to perform a flyby of the moon at right ascension θx,i , and declination θy,i as shown in Figure 4. If the
surface of the moon is completely illuminated, a single pass of the moon is sufficient to generate a global surface map.
However, since at any given time, roughly 50% of the moon is in the hard shadow of the Sun, we allow the swarm to
generate the global map Nv passes. Furthermore, to generalize these designs, we allow each visit to have Nv, j spacecraft,
where j is the index corresponding to the pass number. The visiting location of the moon is characterized by its true
anomaly fv, j . The swarm size can now be computed as

NSw =

Nv∑
j = 1

(5)

This allows us to categorize the design parameters as orbital parameters, and encounter shaping parameters as shown
in Figure 4. The visual surface coverage Pcov capable by a given swarm can be computed, if the shape model of the
moon is available, using the algorithms described in [9]. Additionally, we assume that the current spacecraft swarm has
the same Class 2 architecture as describes in [17], which suggests that the observing spacecraft coordinate with a leader
spacecraft for communication.

Fig. 4 Spacecraft swarm configuration showing the orbital design parameters (left) and encounter shaping
parameters (right).
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D. Flyby Trajectory Construction
The previous sections described the interplanetary trajectory of the swarm, and how their encounters are shaped with

respect to the moon. Here we describe an algorithm that ensures that the encounter trajectories can be accomplished
with the designed interplanetary trajectory. More specifically, we ensure that the encounters share the same incoming
hyperbolic asymptote as shown in Figure 5. As described above, selecting the visiting altitude h′f , and the right ascension
θx,i , and declination angles θy,i , allow us to compute a position vector of spacecraft i in a moon centered inertial
frame r̄i,SM using a spherical coordinate to Cartesian transformation. The inertial location of the moon r̄j ,MP at a true
anomaly fv, j , can be computed by transforming the orbital elements to Cartesian coordinates. The vector sum of r̄i,SM
and r̄j ,MP allows us to determine the inertial location of spacecraft i with respect to the central planet r̄i,SP as

r̄i,SP = r̄i,SM + r̄j ,MP (6)

Fig. 5 The design condition on the hyperbolic trajectories stating that all encounters should share the same
incoming asymptote.

In order to propagate the trajectory forward, we need the complete spacecraft state (position, and velocity) at an
instant in time. However, the current problem defines the position vector of the spacecraft at one instant, and the excess
velocity vector of the incoming asymptote at another. Therefore, propagating the flyby trajectories turns into a boundary
value problem. In order to solve this problem, we compute the planet centered velocity vector at the time of encounter.
Let V̄i,SP =

[
vx vy vz

]T be this unknown velocity vector. The vis viva equation [22] allows us to constrain this
velocity vector as

��V̄i,SP

��2 = v2
x + v2

y + v2
z =

(
v−∞,2

)2
+

(
2µP
ri,SP

)
(7)

Where, µP is the gravitational parameter of the planet, and ri,SP is the magnitude of r̄i . In order to place additional
constraints the orbital elements of the trajectory will be computed. The semi-major axis a can be easily determined
from v−2,∞ [22]. The eccentricity vector is written as

ēi =
1
µP

((
v2
i,SP −

(
µP

ri,SP

))
r̄i,SP −

(
r̄i,SP .V̄i,SP

)
V̄i,SP

)
(8)

The specific angular momentum h̄i , and normal vector n̂i can be expressed as

h̄i = r̄i,SP × V̄i,SP (9)

and

n̂i = k̂ ×
h̄i��h̄i �� = k̂ × h̄i (10)
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Where, k̂ = [0 0 1]T is the z axis of the central planet’s inertial frame. It should be noted here that the vectors
expressed in Equations 8-10 are functions of the unknown velocity components. These can be used to define the
orientation elements of the orbit. The right ascensionΩi , inclination ini , and argument of periapsis ωp,i of the spacecraft
can be determined as

Ωi =


arccos

(
n̂i ,S [1]
|n̂i ,S |

)
n̂i,S[1] ≥ 0

2π − arccos
(
n̂i ,S [1]
|n̂i ,S |

)
n̂i,S[1] < 0

(11)

ini = arccos

(
ĥi[3]��ĥi ��

)
(12)

and

ωp,i =

{
arccos (n̂i .êi) êi[3] ≥ 0
2π − arccos (n̂i .êi) êi[3] < 0

(13)

Finally, the hyperbolic true anomaly f∞,i is computed as

f∞,i = arccos
(
−1
ei

)
(14)

Where the numbers inside [] indicate the component of the corresponding vector. On the entering asymptote, we set
the true anomaly of the as fi = − f∞,i . We can now write the asymptotic excess velocity vector

V̄∞,i =

√
µP

a
(
1 − e2

i

) R3(Ωi)R1(ini)R3(ωp,i)


− sin

(
f∞,i

)
ei + cos

(
f∞,i

)
0

 (15)

Where R1 and R3 are principal rotation matrices about axes 1 and 3 respectively [23]. The right ascension RAAi

and declination DAAi of spacecraft i can now be extracted from the asymptote as

RAAi = arctan
(
V̄∞,i[2]
V̄∞,i[1]

)
(16)

and

DAAi = arcsin

(
V̄∞,i[3]��V̄∞,i ��

)
(17)

This allows us to place final constraints on the trajectories as

RAAi = RAA (18)

and

DAAi = DAA (19)

for all spacecraft in the swarm. This ensures that all spacecraft share the same arrival asymptote. It should be noted
here that Equations 7, 18, and 19 are nonlinear functions of the spacecraft velocity components, and should be solved
using a nonlinear solvers. Typically, all root solvers require an initial guess. Through experimentation, we found that the
velocity of the moon during the encounter, if used as an initial guess, produces faster convergences to the solutions.
In this way, we can specify an encounter hyperbola by specifying an encounter point on its trajectory, and the arrival
asymptote at the central planet.
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E. Swarm Design
We can now pose the automated spacecraft swarm design problem as an optimization problem, where we are

interested in determining the trajectories of the swarm which can meet a coverage requirement PCov,R with a minimum
number of spacecraft. Additionally, planetary periapsis altitude, and collision avoidance constraints as described in [21]
can also be placed on the swarm. Therefore, the swarm design problem can be posed as

min JSw = NSw

s.t. PCov ≥ PCov,R

hi,p ≥ hp ∀ i ≤ NSw

Collisions = False

(20)

Where, hp , and hp,R denote the planetary periapsis of the trajectory, and its corresponding user defined requirement
respectively. The design variables of the swarm optimization problem are presented in Figure 6.

Fig. 6 Gene map of the swarm design problems showing different design variables and their attributes.

IV. Numerical Simulations
In this section, we demonstrate the results of the algorithms discussed here to design a spacecraft swam mission

to map the surface of the Martian moon Phobos. The objective of the notional mission can be stated as follows. We
are interested in designing a swarm mission to generate at least 85% global surface maps of Phobos with a maximum
ground resolution of 1 m, and a minimum elevation angle of 5 deg. A 32k triangular face shape model (see Figure 11)
is used to model the surface of Phobos and its physical orbital characteristics [24].

A. Spacecraft Design
We assume that the spacecraft in the swarm have a CubeSat grade camera [25] with an aperture diameter of 8 cm.

The flyby altitude and spacecraft field of view required are computed using Equations 1 and 2 as 114 km and 10.1 deg
respectively. With a 5 km tolerance, the designed flyby encounter altitude is selected as 109 km.

B. Trajectory Design
The interplanetary trajectories of the swarm are obtained by solving Equation 4. The launch and arrival dates are

obtained by constrained optimal search using a genetic algorithm optimizer. The user defined inputs to the trajectory
design problem are presented in Table 1.

Table 1 User defined inputs and bounds supplied for the trajectory design problem.

The genetic algorithm converged to an optimal solution within 5 generations, where it explored 7200 trajectories.
The optimal trajectory of the swarm is presented in Figure 7. The pork chop plot was generated by solving Lambert’s
problem over a smooth grid of launch and arrival dates, by using a fast Lambert solver algorithm [26] developed at the
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Fig. 7 The selected optimal solution of the trajectory design problem along with the Earth-Mars pork chop
plot.

University of Texas. As seen in Figure 7, the optimal launch and arrival dates for the swarm are 6th August 2020 and
22nd August 2021 respectively. The trajectory would be launched with a C3 energy of 16.6 km2/s2, and a time of flight
of 200 days. The trajectory has a excess asymptotic velocity of 2.5 km/s at Mars. The RAA and DAA of the trajectory
at arrival 29.1 deg and −14 deg respectively.

C. Swarm Design
The automated swarm design problem described in Equation 20 was solved using a mixed integer genetic algorithm

optimizer [27]. The user defined parameters are summarized in Table 2.

Table 2 User defined inputs and bounds supplied for the swarm design problem.

The genetic algorithm utilized a uniform stochastic sampling scheme with a uniform crossover fraction of 80%. The
solution was able to converge to an optimal solution in 22 generations, exploring a total of 2300 designs. The results of
the optimization showing the evolution of the mean and best swarm size across different generations of designs, along
with the selected optimal solution are presented in Figure 8. As seen in Figure 8, the optimal solution contained a 4
spacecraft swarm, which visits Phobos at two locations using two spacecraft each visit.

D. Operation
The hyperbolic trajectories of the swarm at Mars are presented in Figure 9. All trajectories were found to have

the same RAA and DAA as determined from the trajectory design problem. This can also be seen in Figure 9 as both
trajectories have nearly parallel incoming trajectories. As seen here, the swarm has two encounters with Phobos. The
operation sampled during one of the encounters is presented in Figure 10.
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Fig. 8 Progress of the genetic algorithm showing the convergence to an optimal solution (left) along with the
selected optimal solution (right).

The swarm is collectively able to cover a total of 86.5% of Phobos’ surface as visualized in Figure 11, thus meeting
the requirements of the mission objectives.

V. Discussion
The current work described the development of an automated mission design architecture for spacecraft swarm

missions. The specific type of mission we addressed here was generating global surface maps of planetary moons
through flybys of spacecraft swarms. In doing so, few crucial challenges to developing such architectures were raised.
Firstly, we noticed that mission design is a highly multidisciplinary problem. For instance, the design of the spacecraft
camera, and the interplanetary trajectory influence the swarm performance. For this reason, having a unifying design
tool such as IDEAS can be beneficial over traditional decoupled mission design schemes. More importantly, This work
also addresses a major challenge that shows up for designing the swarm flybys, which is to ensure that all trajectories
share the same incoming asymptote. It can be noted here that, despite the assumption in the current work that all the
spacecraft in the swarm were launched individually, having the same asymptote supports both mother-daughter, and
single launch architectures.

The following are a few important contributions of the current work to the state-of-the-art mission design. The

Fig. 9 The hyperbolic trajectories of the swarm showing the arrival asymptote and the encounter locations.
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Fig. 10 The flyby mapping operation of the swarm sampled at one of the encounters.

Fig. 11 The shape model of Phobos used to model its surface (left) along with the final coverage after the flybys
of the swarm (right).

current work developed novel algorithms to design flyby trajectories where an encounter point and incoming asymptote
were specified. Next, we proceeded to show how such trajectories would factor into the design of a small body mapping
mission, by developing a unifying mission design scheme. Finally, we applied these schemes to a notional moon
mapping mission where the algorithms presented were successfully demonstrated.

VI. Conclusion
This paper presents the development of a new mission architecture capable of automatically designing swarm

flyby missions to planetary moons. We further analyze how the design methodology of the IDEAS framework, and
its individual modules (spacecraft, swarms, and trajectory) influence the design of the overall mission. We then
formulated the individual trajectory, and swarm design as optimization problems. A crucial element of the swarm
design problem was to constrain the mapping trajectories of the spacecraft swarm, to share the same arrival asymptote
as the designed hyperbolic interplanetary trajectory. To address this problem, we presented a set of nonlinear equations
which determined the inertial velocity vector during the encounter with the moon. Finally, the algorithms developed in
this work is demonstrated through automated design of a notional swarm mission to map the surface of the Martian
moon Phobos. Our future work on IDEAS will focus on incorporating high fidelity dynamical models into the design.
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Additionally, perturbations such as launch errors will be factored into the design as well. Such perturbations can be
used to estimate the probabilistic correction maneuvers need in real mission, thus making IDEAS a more accurate and
realistic mission design framework.
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